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A comparison of area level and unit level small area
models in the presence of linkage errors
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ABSTRACT

In Official Statistics, interest in data integration has grown enormously, but the effect
of integration procedures on statistical analysis has not yet been sufficiently developed.
Data integration is not an error-free procedure and linkage errors, as false links and
missed links can invalidate standard estimates. Recently, increasing attention has
been paid to the effect of linkage errors on the statistical analyses and on statistical
predictions.

Recently, methods to adjust the unit level small area estimators for linkage errors
have been proposed when the domains are correctly specified. In this paper we compare
the näıve and the adjusted unit level estimators with the area level estimators that are
not affected by the linkage errors. The comparison encourages the use of the adjusted
unit level estimator.
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1. Data integration and the impact of linkage errors

In Official Statistics, data integration has been acquiring more and more importance; the

effect of this procedure on statistical analyses has long been disregarded for a long time

but in recent years the impact of linkage errors, false links and missed links, on standard

estimates has begun to be analysed. The effect of linkage errors on subsequent analyses

has first been investigated by Neter et al. (1965) where first solutions can be found.

Scheuren and Winkler (1993, 1997) and Lahiri and Larsen (2005) analyse the problem

from a primary user perspective; in this case the evaluation of the linkage errors is a

by-product of the linkage procedure and they propose different methods to use this

information to adjust for the linkage biases in subsequent analyses. Clearly, the resulting

unbiased estimators depend on the parameters of the linkage model. Recently, Han and

Lahiri (2018) propose a general framework for statistical analysis with linked data under

general assumptions. A different perspective is in Chambers (2009); secondary data

users generally do not have detailed information on linkage model and parameters, in

this setting, Chambers (2009) suggests an approximated Best Linear Unbiased Estimator

and its empirical version and proposes a maximum likelihood estimator with application

to linear and logistic regression functions. An extension to sample-to-register linkage is

also proposed.
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In the context of fitting mixed models with linked data, Samart and Chambers (2014)

extend the settings in Chambers (2009) and suggest linkage error adjusted estimators

of variance effects under alternative methods. In Official Statistics, mixed models are

largely used for small area estimation to increase the detail of dissemination of statistical

information at local level.

Administrative data can be used to augment the information collected by sample

surveys. They can, therefore, increase the set of auxiliary variables and help to improve

the model fitting for small area estimation. Linkage of external sources with basic

statistical registers as well as with sample surveys can be carried out on different linkage

scenarios, see section 2 for the linkage model and errors we adopt in this paper.

Di Consiglio and Tuoto (2016) extend the analysis on the effects of linkage errors on

the predictors based on unit level mixed models for small area estimation when auxiliary

variables are obtained through a linkage procedure with an external register.

Under the assumption that false matches occur only within the same small area - i.e.

in Chambers’s terminology the block coincides with the small area-, the linkage errors

affect small area predictors both through the impact on the estimation of the fixed and

random components, and through the impact on the variance matrix of the linked values.

Finally, linkage errors also result in an erroneous evaluation of the covariates means over

the sampled units and consequently of the unobserved population units.

Following Chambers (2009) in the sample-to-register linkage setting, and in particu-

lar, assuming that the sampling mechanism does not affect the outcome of the linkage

process (see Chambers 2009 for details), a pseudo-EBLUP estimator based on the de-

rived distribution of the linked variable can be obtained. Section 3.4 illustrates the

method in more detail.

Briscolini et al. (2018) introduce a Bayesian approach that jointly solves the record

linkage problem and the small area predictions. They also compare the Bayesian approach

with the frequentist estimator proposed in Di Consiglio and Tuoto (2016). In the context

of secondary data analysis, Han (2018) put forward an approach to solve small area

estimation in presence of linkage errors.

The cited studies focus on the evaluating and the adjustment of linkage errors when

small area prediction is performed by a unit level model. However, one might question

whether the complexity of adjusting for linkage errors at unit level is in fact overwhelmed

by the simplicity of area level models, which do not require unit level linkage for the

estimation.

This paper aims at comparing the unit level estimator with the area level estimator

in the presence of linkage errors, illustrating advantages and drawbacks by means of the

application to real case and the simulation of various scenarios.

2. Linkage model and linkage errors

The reference theory for record linkage dates back to Fellegi and Sunter (1969). They

consider the linkage between two lists, L1 and L2, of size N1 and N2 respectively. Within

this context, we can consider, for instance, the linkage between a register and a sample.

From a statistical viewpoint, the linking process is a classification problem; it aims to
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classify all the pairs generated by the lists’ comparison Ω = {L1× L2} = {ω = (i, j)}
where i ∈ L1 and j ∈ L2 into two independent and mutually exclusive subsets, M and U
respectively;

- M is the set of links, grouping all the pairs composed by records belonging to the

same unit M = {ω = (i, j) | i = j};
- U is the set of non-links U = {ω = (i, j) | i �= j}, where i ∈ L1 and j ∈ L2.

The classification decision is taken for each pair ω on the basis of the comparison

on K linking variables, common to the two lists, e.g. name, surname, date of birth,

address. The comparison on the linking variables results in a comparison vector γi j, e.g.

γi j = (1,1,0,1) if unit i ∈ L1 and unit j ∈ L2 present the same (or similar) values for the

first, the second, and the forth linking variables and different (or quite dissimilar) value

for the third linking variable. From the observed probability distribution of γ over the

pair space Ω, two probability distributions are estimated:

- m(γi j), i.e. the probability of γ given that the pair (i, j) belongs to set M;

- u(γi j), i.e. the probability of γ given that the pair (i, j) belongs to set U .

To estimate the two distributions m(γi j) and u(γi j), and the prevalence of the links in

the pairs π = |M|/|Ω| usually the EM algorithm is applied; details can be found in Jaro

(1989), Herzog et al. (2007).

The classification procedure might produce two kinds of errors: the mismatch or

false positive, when a pair (i, j) is classified as a link but in reality the two records i and
j refer to different units, and the missing match or false negative, when the pair (i, j) is
classified as a non-link but in reality the two records i and j belong to the same unit.

Linkage procedure aims at minimising both the probability of false match and the

probability of missing match or, at least, to keep both below acceptable values. The

classification procedure provides as a by-product the false positive rate and the false

negative rate. For each pair, it also provides estimate of the probability of being a

correct link given that the link is assigned:

λi j =
m(γi j)π

m(γi j)π +u(γi j)(1−π)
. (1)

The quantities λi j will be exploited for adjusting the linkage errors in the small area

estimation framework described in the next section. It is worthwhile noting that accurate

estimation of these probabilities is not a trivial task, even when the probabilistic linkage

strategies are very effective in identifying the correct links. We will go back to this point

in section 4, however the estimation of λi j is not the focus of this paper.

3. Small area estimation

When the survey is not planned to provide estimates at a very fine disaggregation (e.g.

by geography or by a cross-classification such as gender and age), the standard estimates
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are often too variable, because the sample size is too small or zero at the desired level.

Small area estimation methods allow an improvement of the quality of the estimates

exploiting relationships of the target variable with highly correlated auxiliary variables at

unit level or area (domain) level. For an extensive review of small area methods, see

Rao and Molina (2015).

In the following sub-sections we briefly overview the basic unit level (Battese-Harter-

Fuller, 1988) and area level (Fay-Herriott, 1979) estimators. We describe how the

former has to be modified to account for the linkage errors in the presence of auxiliary

variables that are not recorded in the survey but obtained from an external source, such

as administrative data.

3.1. The unit linear mixed model

Let the population units be partitioned into D different domains. Let Y be the target

variable and X the auxiliary variables observed on the same units. Let us assume a linear

mixed relationship between the target variable and the covariates

yid = XT
idβ +ud + eid , i = 1, . . . ,Nd , d = 1, . . . ,D, (2)

where β is a p-dimensional vector of fixed regression coefficients and ud , d = 1, . . . ,D,

are the i.i.d. random variables related to the specific or domain contributions, with

E(ud) = 0 and V (ud) = σ2
u , independently distributed to the random errors eid i.i.d. with

E(eid) = 0 and V (eid) = σ2
e . In matrix notation

Y = Xβ +Zu+ e

where Z is the design matrix denoting the belonging of units to the areas: Z =Blockdiag(Zd =

1Nd ;d = 1 · · ·D).

The total variance is given by V (Y ) = V = σ2
u ZZT + σ2

e I; equivalently, in matrix

notation, V = diag(Vd ;d = 1 · · ·D) with Vd = σ2
e INd +σ2

u ZdZT
d . When σ2

u and σ2
e are

known, the BLUP estimator of a small area mean or totals Ȳd , is given by

ˆ̄Y BLUP
d =

1
Nd

⎛
⎝∑

i∈sd

yid + ∑
i∈sc

d

ŷBLUP
id

⎞
⎠ (3)

where sd is the sample in area d, ŷBLUP
id = XT

id β̂ + ũd with

β̂ = (XT
s V−1

ss Xs)
−1XT

s V−1
ss y

and ũ = σuZT
s V−1

ss (y−Xsβ̂ ), where y is the sample vector of Y and denoting with the

subscript s the portion of vector and matrices related to the sample observations.

In real cases, the estimates are given by the EBLUP that is obtained by plugging the

estimates σ̂u and σ̂e into V and then into the previous expressions of β̂ and ũ . See the

section (sec.3.5) for a brief overview of the variance components estimation.
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3.2. Area level small area predictor

The basic area level model (Fay and Herriot, 1979) relies on a linear relationship between

the direct estimates ˆ̄Yd and the true finite population values Ȳd in each area d, and a

linear relationship among the true values and known area totals Xd :

ˆ̄Yd = Ȳd + εd d = 1, . . . ,D, (4)

where εd is the sampling error in the estimation of Ȳd , with mean zero and assumed

known variance σ2
ed , and

Ȳd = Xdβ +ud d = 1, . . . ,D, (5)

where β is the vector of regression coefficients and ud is assumed to be normal with zero

mean and variance σ2
u . Combining (4) and (5) one gets:

ˆ̄Yd = Xdβ + εd +ud d = 1, . . . ,D, (6)

where ε and u are assumed to be independent.

The BLUP estimator based on the model in (6) is given by:

˜̄Y FH
d = γd

ˆ̄Yd +(1− γd)Xd β̂ d = 1, . . . ,D, (7)

where γd = σ2
u /(σ2

u +σ2
ed). The EBLUP is obtained by replacing an estimate (e.g ML

or REML estimate) of σ2
u in formula (7). See Molina and Rao (2015) for more details.

The FH model assumes known σ2
ed . In practice it has to be estimated. See section (4)

for more details on how it is estimated in the present work.

3.3. Linear mixed model under Record Linkage

When the auxiliary variables X and target variable Y are not jointly observed on the

same data set but are obtained, for instance, by linking a sample with a register, the use

of the relationship (2) and the corresponding estimator can produce biased estimates,

if naively applied on linked data. Di Consiglio and Tuoto (2016) analyse the effect of

linkage errors on unit level small area estimators and propose an adjustment to account

for linkage errors, following the setting in Chambers (2009) and Samart and Chambers

(2014).

The proposed adjustment, however, requires that no linkage errors occur between

blocks/small areas. Under this assumption, the area level estimator is not affected by

linkage errors and therefore linkage bias, since it only needs the mean value of X for

each of the target domains. Hence, under the assumption of no linkage errors between

areas, the standard Fay-Herriot estimator can be applied even in the presence of linkage

errors within the small areas.

Let us first consider a register-register linkage and describe the linear mixed model

and the proposed adjustment in this linkage setting.
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Let us denote with y∗id the value of the variable Y from one register that is matched

with the value Xid in the other register, for unit i in domain d.
Let us assume that the blocking variable Z is measured without error on both the

Y -register and the X-register, and that the partition of the registers introduced by Z is

such that linkage errors only occur within this blocking variable.

Finally, let us assume an exchangeable linkage error model (see Chambers, 2009),

i.e. the probability of correct linkage is the same for all records in block q, q = 1, · · · ,Q.

Under the following standard assumptions, as in Chambers (2009) and in Samart

and Chamber (2010):

1. the linkage is complete, i.e. the X-register and Y -register refer to the same popu-

lation and have no duplicates;

2. the linkage is one to one between the Y - and X-registers;

3. exchangeable linkage error model;

the observed linked variable Y ∗ is a permutation of the true one Y : Y ∗ = AY , where A is

a random permutation matrix such that E(A|X) = E. The blocking index q is omitted

in previous equations for simplicity of notation.

Being Pr(aii = 1|X)=Pr(correct linkage)= λ and Pr(ai j = 1|X)=Pr(incorrect linkage)=
ψ, the expected value E(A|X) = E can be written as:

E = (λ −ψ)I +ψ11T . (8)

In this setting, Samart and Chambers (2014) proposed a ratio type corrected esti-

mator for the regression coefficients β :

β̃R = (XTV−1EX)−1XTV−1y∗ (9)

following the same rationale of the bias correction estimator in the linear model (Cham-

bers, 2009). They also proposed an approximation of the BLUE estimator by exploiting

the new relationship between Y ∗ and X :

β̃C = (XT ET Σ−1EX)−1XT ET Σ−1y∗ (10)

where the derived variance V (Y ∗) of the observed y∗ is considered:

V (Y ∗) = Σ = σ2
u K +σ2

e I +W (11)

with

W ≈ diag((1−λ )(λ ( fi− f̄ )+ f̄ (2)− f̄ 2)) (12)

being fi = Xiβ and K a function of the number of areas within a block, block-group

sizes and λ s; see Samart and Chambers (2014) for more details. Clearly, the estimation

of β requires an iterative process as Σ depends on β via the f . Moreover, the variance

components are unknown and have to be estimates. The linkage errors can affect also
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their estimation, see section 3.5 for a short description of how Samart and Chambers

(2014) propose to deal with this issue.

3.4. Unit level small area predictor under linkage errors

Let us now consider the more realistic situation when the linkage is between a sample,

where the variable Y is observed, and a register where X is recorded; this is the case

where mixed models are useful for small area estimation.

In the sample-to-register setting, Chambers (2009) adds the assumption that the

sampling does not change the outcome of the linkage process, i.e. selecting a record to

be in sample does not change the register record to which it would be linked if all records

were linked. Hence, the same permutation of the y described above would apply. This

scheme works as if a hypothetical linkage can be performed before the sampling process

and then we observe the sampled sub-set.

This assumption, as already pointed out by Chambers (2009), can be easily chal-

lenged as the sampling process may indeed affect the linkage process, but it is very useful

in extending the register-register estimation setting to the survey-register situation.

Under the given conditions, the matrices E, V and Σ depend only on blocking vari-

ables and linkage errors, so there is no need to use sampling weights.

If the exchangeable linkage error model is assumed, as in section 3.3, the linkage

errors occur only within the same block where records have the same probability of

being correctly linked, then the mixed model can be fitted with the observed sample

quantities applying the same argument as in the register-to-register case. See Chambers

(2009) for more details.

Finally, for the small area estimation, we assume that small areas coincide with

blocks. Note that with the latter assumption, the target mean of y is the same as the

mean of the linked Y ∗:
ˆ̄Y ∗ = ˆ̄Y.

Di Consiglio and Tuoto (2016) propose to exploit the distribution of Y ∗ to obtain the

pseudo-BLUP estimator of ȳ∗ and then an estimation of ȳ:

ˆ̄Y ∗BLUP
d =

1
Nd

⎛
⎝∑

i∈sd

y∗id + ∑
i∈sc

d

ŷ∗BLUP
id

⎞
⎠ (13)

where ŷ∗BLUP
id = EX β̃C + ũd , ũ = σuZT Σ−1(y∗ −EX β̃C) and β̃C is given in formula (10).

The pseudo-EBLUP estimator is given by replacing the estimates of the variance

components (as in section 3.5) into the estimates of β̃C and ũ and then in (13).

3.5. Estimation of variance components

The BLUE and the approximate BLUE estimators considered in the previous sections are

based on known variance components. However, the variance components σu and σe are

usually unknown, they are commonly estimated by methods of moments, ML or REML

(Harville, 1977, Searle et al 2006). In Samart and Chambers (2014), a Pseudo-ML and
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Pseudo-REML are proposed for adjusting variance component estimation for linkage

errors. In the application and simulation study reported in section 4, we consider only

ML approach, and pseudo-ML for the linkage error framework, assuming multivariate

normal distribution.

In general, there is no analytical expression for the ML variance component estimator

and the method of scoring is applied. When variables X and Y are both recorded on the

sample, hence no linkage errors, the target variable is y∼ N(Xβ ;V ). On the other hand,

in the presence of linkage errors, we should use the modified distribution y∗ ∼ N(E f ;Σ).
The scoring algorithm can be applied on the derivatives of this likelihood rather than of

the likelihood of the un-observed target variable y.
In the presence of linkage errors, estimates of β can be obtained from formulas (9) or

(10) by replacing the variance components with their estimates. An iterative process is

needed between the pseudo-ML estimates of the variance components and the estimate

of β . See Samart and Chambers (2014) for more details.

4. Results on real and simulated data

Previous estimators are applied to a realistic case for estimating small areas in the

presence of linkage errors. In addition, several synthetic populations have been generated

based on two different mixed linear models to test the performance of estimators in a

controlled environment. This section illustrates the real case and the data generation

for the controlled experiment and describes the result.

4.1. The real case data

Microdata from the Survey on Household Income and Wealth, Bank of Italy, (SHIW),

can be used to study the relationship between the consumption (the variable Y observed

throughout the survey) and the net disposable income (the variable X available for

the whole population). The survey sample is designed to produce reliable estimates at

NUTS1 level, but the relevance of the topic prompts analysis of the results at the finer

level, i.e. the NUTS2 administrative regions, which therefore represent a small area of

estimation. In fact, variables Y and X are both observed by the survey: this allows us

to compare different settings for linkage and mixed model estimation, knowing the true

value of the regression model parameters. However, in principle one can imagine to

study the relationship between the consumption recorded via the survey and the income

from the tax register, available to the entire Italian population, thus overcoming the

households’ reluctance to provide information on income via a survey.

To overcome privacy issue and guarantee the reproducibility of the experiment, the

record linkage procedure is applied to the fictitious population census data (McLeod et al.

2011) created for the ESSnet DI, an European project on data integration that run from

2009 to 2011. The population size is over 20000 records; data contain linking variables

(names, dates of birth, addresses) for individual identification with missing values and

typos, mimicking a real situation. The small domains are defined as aggregation of postal

codes, assigning 18 areas. From this population, 100 replicated samples of size 1000 were
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Table 1: True values of the correct linkage rates

Scenario Min(λ ) Mean(λ ) Max(λ ) MMR

A 0.9525 0.9730 0.9834 0.0629
B 0.8430 0.8757 0.9043 0.0424

average values in 100 replications, over the 18 areas

independently randomly selected without replacement. Finally on each replication, the

sample containing the Y variable was linked with the register reporting the X variables.

The linkage was performed by means of the batch version of the software RELAIS (2015)

that implements the probabilistic record linkage model (Fellegi and Sunter, 1969; Jaro,

1989).

We considered two linkage scenarios, characterized by two different sets of linking

variables: in Scenario A we used ”Day, Month, and Year of Birth”; in Scenario B

we adopted ”Day and Year of Birth”, and ”Gender”. The first scenario uses linking

variables with higher identifying power than the second scenario, producing fewer linkage

errors in the results (both in terms of missing and false links). In both scenarios we

assume that false linkage errors between different areas do not occur, in other words

the administrative areas, i.e. the small domains are the blocking variable for the linkage

procedures. Both scenarios also contain missing matches, mimicking the real outcomes

of linkage procedures. Missing matches are mainly due to typos in the linking variables

and hence they are independent from the target variable Y and the auxiliary variables

X . In few words, they can be considered missing at random. However, they have the

effect of reducing the sample size. Therefore, in the presence of linkage procedure, the

estimators rely on the linked subset sLd of the sample sd for the domain d.
True matches are known for the ESSnet DI data, so one can calculate the true value

of the linkage errors for the proposed scenarios by comparing the obtained links with the

true matches. Therefore, the value of the probability of correct link, λ , is calculated for

each block (small area), as the ratio between the true matches in the linked set and the

links within each area. Table 1 summarizes the results of the linkage procedures for the

100 replicas, showing the statistics for the probability of correct link λ , on average in the

18 areas. Moreover, Table 1 reports the average of the missing match rate, MMR, in

the 18 areas for the 100 replicas, calculated as one minus the ratio between the numbers

of identified links and the true matches. As expected, in the two scenarios, there is

a trade-off between false matches and missing matches: scenario A has a lower false

match rate but a higher missing match rate and vice-versa for scenario B.

For the adjusted estimator introduced in section 3.4, we use the true false linkage

rate, 1−λ , in each area. We do not simulate additional evaluation of λ s, as the accurate
estimation of λ is still an open research question in record linkage and it is not in the

focus of this paper. However, at the end of the simulation study, we propose an insight

into the behavior of the estimators when the linkage errors are overestimated.
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The experiment considers five estimators for comparison:

1. BHF : is the EBLUP based on the Battese-Harter-Fuller model with X and Y

observed on the same dataset, i.e. no linkage is assumed in this setting:

ˆ̄Y BHF
d =

1
Nd

⎛
⎝∑

i∈sd

yid + ∑
i∈sc

d

ŷEBLUP
id

⎞
⎠ ,

where sd is the sample in area d, ŷEBLUP
id = XT

id β̂ + ûd with

β̂ = (XT
s V̂−1

ss Xs)
−1XT

s V̂−1
ss y

and û = σ̂uZT
s V̂−1

ss (y−X β̂ ).

2. BHF L : is the EBLUP based on the Battese-Harter-Fuller model on the subset of

linked records. In this estimator we reduce the sample size to the linked records

but we do not introduce linkage errors; this is our benchmark:

ˆ̄Y BHF L
d =

1
Nd

⎛
⎝ ∑

i∈sLd

yid + ∑
i∈sc

Ld

ŷEBLUP
id

⎞
⎠ ,

where sLd is the sub-set of linked sample units in area d.

3. BHF naive : is the näıve EBLUP based on the Battese-Harter-Fuller model on the

subset of linked records, considering X and Y observed on two different datasets,

without adjustment for linkage error:

ˆ̄Y BHF naive
d =

1
Nd

⎛
⎝ ∑

i∈sLd

y∗id + ∑
i∈sc

Ld

ŷ∗EBLUP naive
id

⎞
⎠ ,

where sLd is the sub-set of linked sample units in area d, ŷ∗EBLUP naive
id = XT

id β̂ ∗+ ûd

with

β̂ ∗ = (XT
sL

V̂−1
sLsL

XsL)
−1XT

sL
ˆVsLsL
−1y∗

and û = σ̂uZTV̂−1
sLsL

(y∗ −XsL β̂ ∗).

4. BHF adj: is the adjusted EBLUP based on the Battese-Harter-Fuller model:

ˆ̄Y BHF ad j
d =

1
Nd

⎛
⎝ ∑

i∈sLd

y∗id + ∑
i∈sc

Ld

ŷ∗EBLUP
id

⎞
⎠ ,

where ŷ∗EBLUP
id = EX β̂C + ûd and û = σ̂uZT Σ̂−1(y∗ −EX β̂C), and β̂C is given by

β̂C = (XT
sL

ET
sL

Σ̂−1
sLsL

EsL XsL)
−1XT

sL
ET

sL
Σ̂−1

sLsL
y∗.
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5. FH : is the EBLUP based on the Fay-Herriot model:

˜̄Y FH = γ̂d
ˆ̄Y +(1− γ̂d)Xd β̂ ,

where γ̂d = σ̂u/(σ̂u + σ̂ed). The FH model assumes known sampling variance σ2
ed ,

however it needs to be estimated in practice. In this simulation, we used a simple

minded smoothing method, which assumes that the population variances of all

the domains are identical, σ2
e . The variances of the direct estimators are then

evaluated as σ̂2
e /nd where σ̂2

e is estimated from the unit linear model.

It is worth noting that the five estimators are evaluated on different sub-sets; the

BHF estimator and the FH estimator are evaluated on the sample sd , the BHF naive

and the BHF adj estimators are evaluated on the linked sub-set sLd that might include

linkage errors; the estimator BHF L is evaluated on the sub-sample sLd but the correct

values of X in the register have been used.

Table 2 reports the average of the Absolute Relative Error (ARE) over the 18 areas,

the average of the Standard Deviation (SD), and the average of the Mean Square Error

(MSE). Results in table 2 show that in terms of bias the area level estimator outperforms

the unit level estimators, even when linkage error correction is applied. However, in

terms of variability, the area level estimator shows values considerably higher compared

to the other estimators. We assumed equal population variances in all domains in the

implementation of the Fay-Herriot model. This assumption may be not appropriate in

our context, highlighting that sampling variance smoothing deserves great attention in

the application of the FH estimator. We will return to this point in the concluding

remarks, though the variance estimation is not the focus of this paper, see Hawala and

Lahiri (2018) for some ideas on variance modeling.

Table 2 shows that the adjusted unit level EBLUP (BHF adj) reduces the bias with

respect to the näıve estimator (BHF naive), at the price of an increase in variance that

is, however, compensated at MSE level. In fact, the MSE of the adjusted unit level

EBLUP (BHF adj) is similar to that of the benchmark estimator (BHF L), based on the

linked sample without errors. Similar results are also in Di Consiglio and Tuoto (2016),

and in Briscolini et al. (2018). It is worth noting that the adjustment for linkage errors

does not completely eliminate the bias. We will return to this point in our concluding

remarks.

4.2. Simulated data

In the previous subsection, the comparison of the unit level and area level estimators

in the presence of linkage errors can be affected by the actual relationship between the

variables, which are observed in the field and interpreted with linear mixed models to

pursue our purposes.

To compare the unit level and the area level estimators in the presence of linkage

errors in a fully controlled setting, we create two different models, Model1 and Model2,
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Table 2: Average of the absolute relative error (ARE), standard deviation (SD), and
Mean Square Error (MSE) for estimators BHF, BHF L, BHF naive, BHF adj, and FH

ARE
Scenario BHF BHF L BHF naive BHF adj FH

A 0.0330 0.0333 0.0350 0.0335 0.0231
B 0.0330 0.0334 0.0430 0.0347 0.0231

SD
Scenario BHF BHF L BHF naive BHF adj FH

A 0.4659 0.4820 0.4729 0.4762 2.3188
B 0.4659 0.5426 0.5107 0.5262 2.3188

MSE
Scenario BHF BHF L BHF naive BHF adj FH

A 0.6753 0.6906 0.6981 0.6913 2.3336
B 0.6753 0.7358 0.7938 0.7383 2.3336

based on the following linear mixed models:

Model1 :X ∼ [1,Uni f orm(0,1)], β = [2,4], u∼ N(0,1), e∼ N(0,3),

RealizedVar(u) = 1.5728

Model2 :X ∼ [1,Uni f orm(0,1)], β = [2,4], u∼ N(0,3), e∼ N(0,1),

RealizedVar(u) = 4.7186.

The variables from the two models have been attached to the ESSnet DI data, contain-

ing the linking variables. The previous linking scenarios, A and B, have been considered

for each model. Then, for each model, 100 replicated samples of size 1000 were inde-

pendently and randomly selected without replacement; finally, for each replication, the

sample containing the variable Y was linked to the register that reported the variables

X .

As in the previous section, five estimators are compared: BHF, BHF L, BHF naive,

BHF adj and FH. Table 3 reports the Absolute Relative Error (ARE), the Standard

Deviation (SD), and the Mean Square Error (MSE), averaged over the 18 areas, for

linkage scenario B. The results for linkage scenario A are substantially similar and are

not presented here for the sake of brevity.

For BF estimators, bias and variance are smaller in Model 2 than in Model 1. This is

not the case for the FH estimator. As already observed with real data, the bias reduction

of the adjusted estimator BHF adj more than offsets the increase in variance, so the
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Table 3: Average of the absolute relative error (ARE), standard deviation (SD), and
Mean Square Error (MSE) for estimators BHF, BHF L, BHF naive, BHF adj, and FH

ARE
BHF BHF L BHF naive BHF adj FH

Model1 0.0412 0.0423 0.0476 0.0435 0.0401
Model2 0.0135 0.0137 0.0199 0.0161 0.0266

SD
BHF BHF L BHF naive BHF adj FH

Model1 0.3265 0.3447 0.3349 0.3424 0.9108
Model2 0.2263 0.2412 0.2522 0.2519 1.0040

MSE
BHF BHF L BHF naive BHF adj FH

Model1 0.3837 0.4018 0.4060 0.4013 0.9240
Model2 0.2333 0.2476 0.2652 0.2595 1.0064

MSE of estimator BHF adj is always smaller than the MSE of estimator BHF naive.

The improvement is quite small when the linkage errors are small. As far as the area

level estimator is concerned, it performs better than the BHF estimators in terms of bias

in Model 1, whilst the FH performs worse than the unit level estimators, including the

not-adjusted estimator BHF naive in Model 2. In terms of variability, as anticipated in

the previous section on real data, the area level estimator FH performs worse than the

others, in both scenarios and in both models. The boxplot in figure 1 shows the relative

errors for the estimators BHF, BHF L, BHF naive, BHF adj, and FH, in the 18 areas.

Figure 2 shows the standard deviations for the estimators BHF, BHF L, BHF naive,

BHF adj, and FH in the 18 areas. The distribution over the areas basically confirms the

behavior of the estimators highlighted in table 3.

These evidences do not allow us to answer in a definitive way to the initial question of

the possible advantage of the FH which, unlike the unit level estimator in the presence of

linkage errors, does not require unit linkage. This simulation study seems to suggest that

there are situations (Model 1, real data of previous section) where the area level estimator

can perform well enough and one can avoid to complicate the analysis introducing record

linkage to apply an adjusted unit level estimator, if the FH guarantees enough accuracy.

However, there are also contexts (e.g. Model 2) that show the advantages of considering

auxiliary information at record level, even in the presence of uncertainty introduced by

record linkage. As an aside, one should be careful on using an appropriate smoothing

method for the variance of the direct for the FH estimator.
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Figure 1: Boxplot of the relative errors for the estimators BHF, BHF L, BHF naive,
BHF adj, and FH in the 18 areas

A comparison can be made between unit level and area level estimators when linkage

errors are not accurately evaluated. As already discussed in the previous section, in this

analysis we know the true value of the linkage errors and use them for the adjustments.

However, generally in real cases, assessing linkage errors is not an easy task, the research

on the topic is still active, some proposals include Belin and Rubin (1995), Tuoto (2016),

and Chipperfield and Chambers (2015). To account for difficulties in assessing linkage

errors, we propose a sketch on the behavior of the small area estimators when linkage

errors are not accurately evaluated. When linkage errors are underestimated, we tend

to make estimates such as the näıve. So, let’s focus on the behavior of unit level and

area level estimators when linkage errors are overestimated. To overestimate the linkage

errors, within each small domain we treat the observed range of false linkage rate as if it

were normally distributed, then we evaluate a 95% normality-based confidence interval

for 1−λ , and we consider the superior extreme of the confidence intervals as values of

1−λ in the estimator BHF adj for the 100 replications.

In this analysis, we only consider the Scenario B, which shows the highest linkage

error levels. The boxplot of the values of λ within the 18 areas in the 100 replications is
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Figure 2: Boxplot of the standard deviations for the estimators BHF, BHF L, BHF naive,
BHF adj, and FH in the 18 areas

shown in Figure 3. It is worth noting that the areas with the lowest linkage errors (i.e.

area M3 and area M7) are the smallest ones, both in terms of population and sample.

No linkage errors in these areas is a realistic assumption, since the small size of the areas

avoids false matches.

Table 4 shows the average of the Absolute Relative Error (ARE), the Standard De-

viation (SD), and the Mean Square Error (MSE), in the 18 areas, for estimators FH and

BHF adj.

Table 4 confirms the observed behavior and the relationship between area level and

unit level estimator, even when the linkage errors are not accurately measured. Still in

terms of bias, the FH estimator is preferable to the adjusted BHF estimator in Model 1,

whilst the vice-versa in observed for Model 2. In terms of variability, the BHF estimator

outperforms the FH estimator in both models.
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Figure 3: Boxplot of the values of λ in the 100 replications within the 18 small areas

5. Concluding remarks and future works

We explored the behavior of unit level and area level estimators in the presence of linkage

errors. The area level is, in principle, quite attractive as it does not require record linkage

at all. However, with both realistic and simulated data, we find that the use of auxiliary

information at unit level is still useful, even if it exposes to the risk of unit identification

errors.

As already noted, the implementation of the area level estimator under the Fay-

Herriot model needs reliable smoothed estimates of the sampling variability. We used a

simple minded smoothing method, which assumes that the population variances of all

the domains are identical. This might be a strong assumption and it might have an

Table 4: Average of the Absolute Relative Error (ARE), Standard Deviation (SD), and
Mean Square Error (MSE) for estimators BHF adj and FH when linkage errors are over-
estimated

ARE SD MSE
BHF adj FH BHF adj FH BHF adj FH

Model1 0.0422 0.0401 0.3470 0.9108 0.4009 0.9240
Model2 0.0142 0.0266 0.2554 1.0040 0.2608 1.0064
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impact on our results. Further work is needed to improve the variance smoothing for

the FH estimator.

In this work, the linkage error adjusted unit level estimator is the one suggested

in Di Consiglio and Tuoto (2016) and Briscolini et al. (2018). In the adjustment,

we assumed block specific probabilities of correct link are known and this is indeed a

strong assumption (see remark 2 (3) of Han and Lahiri, 2018). Moreover, the proposed

adjustment assumes the exchangeability of linkage errors, and the small areas coinciding

with the blocks of the linkage process. As already noted in Di Consiglio and Tuoto

(2016) and in Section 4, the adjustment at unit level does not completely remove the bias

introduced by linkage errors. This can be the result of the fact that the exchangeability

assumption is not perfectly met.

While our evaluation does not provide a definite answer, we hope our paper en-

courages others to design an extensive evaluation experiment in order to compare BHF

estimator corrected for linkage error with the EBLUP under the Fay-Herriot model that

does not require any correction for linkage errors.

In the future, we propose to expand our simulation experiment to include the frame-

work proposed by Han and Lahiri (2018) to correct the unit level small area estimation

and to benefit from the use of unit level information to improve estimators, even in the

presence of linkage errors. One of the promising advantages of the Han and Lahiri’s

setting is that it does not require any exchangeability assumption. In Han’s dissertation

thesis (Han, 2018), she suggests an integrated model where the information about the

linkage is carried by all record pairs (links and non-links). In this way all record pairs

contribute to the estimation process and to correct for linkage bias. This model is differ-

ent from the secondary data analysis, adopted in this paper, where only the designated

links are considered. More in details, the linkage process is viewed as a permutation of

the true covariates associated with the observed target variables within a block/small

area. Under the assumption that the random errors and random effects are independent

from the observed linked covariates and the comparison matrix of the linkage, given the

true covariates values, an Empirical Best Predictor is derived.
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